shadow shadow shadow shadow shadow
    Country
    Opportunity Status
    Funding Instrument Type
    Category
    Clear

    Building Synthetic Microbial Communities for Biology, Mitigating Climate Change, Sustainability and Biotechnology

    22-607

    National Science Foundation

    Opening date 24 Jun 2022, 12:00AM

    Closing date 3 Oct 2022, 12:00AM

    Funding Opportunity Number: 22-607

    Opportunity Category: Discretionary

    Expected Number of Awards: 12

    CFDA Number(s): 47.074 -- Biological Sciences

    Cost Sharing or Matching Requirement: No

    Posted Date: Jun 24, 2022 12:00:00 AM EDT

    Closing Date: Oct 03, 2022 12:00:00 AM EDT

    Estimated Total Program Funding: 9500000

    Award Ceiling: none

    Award Floor: none

    Eligible Applicants: Unrestricted (i.e., open to any type of entity above), subject to any clarification in text field entitled "Additional Information on Eligibility"

    Agency Name: National Science Foundation

    Description: Microbes and communities of microbes have remarkable genetic, physiological and biochemical diversity, allowing them to flourish in environments all over the planet and in a variety of substrates and hosts. Given their relative importance to ecosystems around the world, to the economy and to health, researchers have studied microbial systems extensively and have a better understanding of their capabilities and impacts on hosts and the environment. In recent years, researchers have increasingly turned to microbes and their diverse capabilities for bioremediation and applications in biotechnology, agriculture, and medicine. Because of advances in molecular biology, synthetic biology and bioengineering, researchers now have the ability to assemble synthetic microbial communities that have novel compositions, genetics and phenotypes and to use these communities to address both fundamental biological questions and a range of societal problems. The goal of this solicitation is to support research that addresses one or more of the three themes: 1) define the underlying mechanisms or rules that drive the formation, maintenance or evolution of synthetic microbial communities, 2) use synthetic microbial communities to address fundamental biological questions, including questions in molecular biology, cellular/organismal biology, ecology and evolution and/or 3) build synthetic communities with biotechnology, bioeconomy or environmental engineering applications, including but not limited to the production of novel biorenewable chemicals, biodegradation of recalcitrant or “forever chemicals,” enabling a circular bioeconomy, fostering sustainable agriculture and mitigating the impacts of climate change. For theme 3, the emphasis should be on designing communities with novel capabilities and understanding the underlying mechanisms that lead to these novel capabilities. Proposals must address one or more of the three themes noted above. Highest funding priority is given to proposals that have outstanding intellectual merit and broader impacts, while proposals with weaknesses in either category (or those that are perceived as likely to have an incremental impact) will not be competitive. The most competitive broader impacts include assessment plans. Well-conceived broader impacts activities take time and resources; thus, proposers are encouraged to include appropriate costs for broader impacts in the budget. To better understand the societal benefits and risks, as well as the potential for misuse or unintended damage to natural biological systems, synthetic microbial communities proposals should include a careful consideration of the social, ethical, and biosafety/security dimensions of the research. Investigators may choose to address these issues either as part of intellectual merit or broader impacts. Reproducibility in research leads to data that is amenable to more powerful analysis and the potential for reuse of data and greater generation of knowledge. Reproducibility in biological research that is prone to context dependent biological variation presents a unique challenge for the synthetic microbial communities researchers. Investigators must follow or advance best practices in sample collection and preparation, experimental design, data analysis, model generation, and/or validation of mathematical and computational methods to produce scientifically defensible results.

    Grantor Contact Information: NSF grants.gov support grantsgovsupport@nsf.gov

    We use cookies and similar technologies that are necessary to operate the website.Please read our cookie policy.

    We use cookies and similar technologies that are necessary to operate the website. Additional cookies are only used with your consent. We use the additional cookies to perform analyses of website usage and to check marketing measures for their efficiency. These analyses are carried out to provide you with a better user experience on the website. You are free to give, deny, or withdraw your consent at any time by using the "cookie settings" link at the bottom of each page. You can consent to our use of cookies by clicking "Agree". For more information about what information is collected and how it is shared with our partners, please read our cookie policy.

    • Required to run the website
    • Monitoring website usage and optimizing the user experience
    • Evaluation of marketing actions
    • Storage of your preferences from previous visits
    • Collecting user feedback to improve our website
    • Recording of your interests in order to provide customised content and offers
    Cookie Settings Accept